Inertial Technology For North Finding
Steve Clarke, Applications Engineer.

December 2013
To be the leading provider of affordable, high performance, high integrity MEMS inertial products and foundry services
Contents

- Who we are
- What a gyroscope does
- Current products
- Typical applications
- MEMS gyroscopes – how they work.
- High precision gyroscope
- North finding
 - Techniques
 - Important parameters
 - Test Results
- Summary
- Questions/Discussion
A UTC/SPP Joint Venture Company

UTC Aerospace Systems

Silicon Sensing Systems Ltd

Silicon Sensing Products UK

Sumitomo Precision Products

Silicon Sensing Products Japan

Silicon Sensing Systems Japan
Silicon Sensing is a joint venture between Atlantic Inertial Systems and Sumitomo Precision Products.
What a gyroscope does

- Angular rate sensors, are used whenever rate of turn sensing is required without a fixed point of reference. This separates gyros from any other means of measuring rotation, such as a tachometer.
- Traditionally, gyros (gyroscopes) were much like the children’s toy – a spinning mass supported such that its position in inertial space remains fixed and allowing rotation of its support structure to be measured.
- The world of inertial sensors has turned on its head with the emergence of 'solid state' non-rotating rate sensors, still colloquially known as gyros. Their construction in silicon (or sometimes quartz) explains their other descriptive name of ‘MEMS’ (Micro-machined Electro-Mechanical Systems) devices.
- MEMS gyros emerged through the need to overcome the biggest problems associated with traditional spinning wheel gyros – mechanical issues such as fragility, reliability, stiction, wear, backlash and overall life.
- Based on a vibrating element, MEMS gyros sense rotation rate through a phenomenon known as coriolis.
Current Product Range

- **Single Axis Gyroscopes**
 - PinPoint®
 - CRS09/CRS39
 - CRH01
 - CRG20
 - CRS03/CRS07

- **Combination Sensors**
 - Orion ®

- **Accelerometers**
 - Gemini ®

- **Multi-axis**
 - DMU02
Applications

- **Platform Stabilisation:**
 - Camera Stabilisation
- Antennas
- Agriculture Spray Booms
- Cranes
- Fork Lift Trucks

- **Vehicle Dynamic Measurements**
- Proving and Qualification
- Motorsport
- Black box/accident recorders
- Lean Angle Measurement
- Ride monitoring

- **Flight Instruments and Avionics**
- AHRSs, VRUs, VRSs
- Autopilots
- UAVs
Applications

- **GPS Integration and Augmentation:**
 - Autosteer – Precision Agriculture
 - Auto-helms
 - Tilt Compensation – Precision Agriculture
 - Navigation

- **Guidance Navigation and Control:**
 - Vehicle Navigation
 - Position Monitoring
 - Surveying
 - Vehicle Guidance and Control

- **Rail:**
 - Surveying and Track Condition Monitoring
Applications

• Automotive:
 Black box/accident recorders
 Navigation

• Technical Toys
 Model Helicopters
 Robotics
 Education Kits
 Inverted Pendulum

• Plant and Power Equipment:
 Power Tools, safety and control
 Lawn Mowers
 Domestic/Industrial Robots
 Torque Wrenches
 Robotic Vacuum Cleaners
A Vibrating Structure Gyroscope, VSG

A Gyroscope consists of a vibrating structure plus controlling electronics.
Silicon Sensing’s gyroscopes are Vibrating Structure Gyroscopes, VSGs. These VSGs use shell (cylinder or ring) structures and work on the Coriolis principle where forces are observed when a linear motion occurs in a rotating frame. The closed loop technology provides excellent scale factor and performance over wide rate and temperature ranges. The technology has a very rugged design and construction and delivers superior performance than its competitors using other structures (e.g. tuning fork).

“Evolution not Revolution”
SGH01 Head

- Deep trench etched in bulk silicon
- Stable and robust crystalline silicon - 100µm thick
- Planar construction
- Single crystal pane
- Stability of key parameters (fn, f1-f2, Q1-Q2)
- 8 dog Legs to support the vibrating ring.
- Ring diameter: 6mm
- Leg width: 60µm
- Each leg carries three electric tracks
How the VSG works

No angular rate applied
How the VSG works

With angular rate applied

\[F_c = \text{Coriolis Force} \]
VSG3 Sensor Head Construction
Electronic control loop and the sensor head needed to make a gyroscope.
High Performance MEMS Gyroscopes

- CRS09
 - Rate Ranges ±100°/s and ±200°/s
 - Bias Instability ~ 0.6°/h
- CRS39-01 (unpackaged) CRS39-02 (packaged)
 - Rate Range ±25°/s
 - Bias Instability ~ 0.3°/h typical
- CRS39-03 (unpackaged)
 - Rate Range ±25°/s
 - Bias Instability ~ 0.08°/h typical
- CRH01 and CRH02
 - Rate Range ±25°/s ±100°/s ±200°/s and ±400°/s
 - Bias Instability ~ 0.2°/h (CRH01), ~ 0.1°/h (CRH02) typical
North Finding – Indexing Technique.

Measurement 1
0°

Measurement 2
180°

Measurement 3
270°

Measurement 4
90°

Table

Sensitive Axis

Indexing Table

CRS39

NORTH
North Finding – Indexing Technique.

Heading = ATAN2 \(\frac{\text{Meas}_1 - \text{Meas}_2}{\text{Meas}_3 - \text{Meas}_4} \)

where
\[
\begin{align*}
\text{Meas}_1 &= \text{EarthRate}_1 + \text{FixedErrors}_1 + \text{VariableErrors}_1 \\
\text{Meas}_2 &= \text{EarthRate}_2 + \text{FixedErrors}_2 + \text{VariableErrors}_2 \\
\text{Meas}_3 &= \text{EarthRate}_3 + \text{FixedErrors}_3 + \text{VariableErrors}_3 \\
\text{Meas}_4 &= \text{EarthRate}_4 + \text{FixedErrors}_4 + \text{VariableErrors}_4
\end{align*}
\]

but
\[
\begin{align*}
\text{EarthRate}_2 &= -\text{EarthRate}_1 \quad \text{and} \quad \text{EarthRate}_4 = -\text{EarthRate}_3 \\
\text{FixedErrors}_2 &= \text{FixedErrors}_1 \quad \text{and} \quad \text{FixedErrors}_4 = \text{FixedErrors}_3
\end{align*}
\]

therefore
\[
\begin{align*}
(\text{Meas}_1 - \text{Meas}_2) &= 2x\text{EarthRate}_1 + \Delta\text{VariableErrors}_1 \\
(\text{Meas}_3 - \text{Meas}_4) &= 2x\text{EarthRate}_3 + \Delta\text{VariableErrors}_3
\end{align*}
\]
Bias Instability and Angle Random Walk

• The standard deviation of the bias changes between successive averages is plotted against the averaging period (or Correlation Time).
• Raw noise from the gyroscopes can be seen at the sampling frequency (there is no averaging here) at the left side of the chart, i.e. at 0.002 seconds above.
• Angle Random Walk can be calculated from the point where the -0.05 Gradient for a particular plot intercepts the 1 second point and then divided by 60. For the CRS09 above, the gradient intercepts at 2.8 deg/h, giving an ARW = 0.047 deg/√h.
• Bias Instability is read from the lowest part of the plots, 0.6 deg/h for CRS09.
CRS39: Allan Variance.

Bias instability improved from 0.3°/h to 0.08°/h

Angle Random Walk improved from 0.013°/√h to 0.0083°/√h
North Finding Accuracy – Raw Measurements

Single Measurements Unit 1.

Single Measurements Unit 2.
North Finding Accuracy – Improvements

• Use more than one device
 • Use n devices to get \sqrt{n} improvement factor.

• Use multiple measurements
 • Use n measurements to get \sqrt{n} improvement factor.

• Ensure the device is warmed up

• Stable temperature improves bias instability.
North Finding Accuracy – Averaged

Single Measurements.

Averaged Measurements.
North Finding Accuracy – After Warm Up.

Averaged Measurements Unit 1
After Warm Up.

Averaged Measurements Unit 2
After Warm Up.
Summary

• Who we are
• What a gyroscope does
• Current products
• Typical applications
• MEMS gyroscopes – how they work.
• High precision gyroscope
• North finding
 – Techniques
 – Important parameters
 – Test Results
• Summary
• Questions/Discussion
Questions/Discussion

Contact Details:

Silicon Sensing Systems Ltd.,
Clittaford Road
Plymouth
Devon
PL6 6DE
Tel: +44 (0) 1752 723330
www.siliconsensing.com
Inertial Technology For North Finding

December 2013